val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
val totalLength = lineLengths.reduce((a, b) => a + b)

缓存lineLengths

lineLengths.persist()

Spark支持在操作中直接使用函数作为参数

object MyFunctions {
  def func1(s: String): String = { ... }
}

myRdd.map(MyFunctions.func1)
class MyClass {
  def func1(s: String): String = { ... }
  def doStuff(rdd: RDD[String]): RDD[String] = { rdd.map(func1) }
}
class MyClass {
  val field = "Hello"
  def doStuff(rdd: RDD[String]): RDD[String] = { rdd.map(x => field + x) }
}
def doStuff(rdd: RDD[String]): RDD[String] = {
  val field_ = this.field
  rdd.map(x => field_ + x)
}

闭包

var counter = 0
var rdd = sc.parallelize(data)

// Wrong: Don't do this!!
rdd.foreach(x => counter += x)

println("Counter value: " + counter)

键值对

虽然Spark可以在任意类型的RDD上操作,但是一些操作却只能对键值对有效,而最常见的就是shuffle

results matching ""

    No results matching ""