pandas最重要的一个功能就是对不同索引的对象进行算术运算
s1 = Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])
s2 = Series([-2.1, 3.6, -1.5, 4, 3.1], index=['a', 'c', 'e', 'f', 'g'])
s1 + s2
a 5.2
c 1.1
d NaN
e 0.0
f NaN
g NaN
dtype: float64
自动的数据对齐操作在不重叠的索引处引入NA值。
对于DataFrame,对齐操作会同时发生在行和列上。
df1 = DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),
index=['Ohio', 'Texas', 'Colorado'])
df2 = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
index=['Utah', 'Ohio', 'Texas', 'Oregon'])
df1 + df2
b c d e
Colorado NaN NaN NaN NaN
Ohio 3.0 NaN 6.0 NaN
Oregon NaN NaN NaN NaN
Texas 9.0 NaN 12.0 NaN
Utah NaN NaN NaN NaN
在算术方法中填充值
在对不同索引对象进行算术运算时,可能希望在找不到值时填充一个特殊值
df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd'))
df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde'))
df1.add(df2, fill_value=0)
a b c d e
0 0.0 2.0 4.0 6.0 4.0
1 9.0 11.0 13.0 15.0 9.0
2 18.0 20.0 22.0 24.0 14.0
3 15.0 16.0 17.0 18.0 19.0
DataFrame和Series之间的运算
首先,计算一个二维数组与某行之间的差
arr = np.arange(12.).reshape((3, 4))
arr - arr[0]
array([[ 0., 0., 0., 0.],
[ 4., 4., 4., 4.],
[ 8., 8., 8., 8.]])
在numpy中这种现象叫做广播。其实,DataFrame与Series之间的运算也差不多
frame = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
index=['Utah', 'Ohio', 'Texas', 'Oregon'])
series = frame.ix[0]
frame - series
b d e
Utah 0.0 0.0 0.0
Ohio 3.0 3.0 3.0
Texas 6.0 6.0 6.0
Oregon 9.0 9.0 9.0
如果某个索引值在DataFrame的列或Series的索引找不到,则参与运算的两个对象会重新索引并形成并集
series2 = Series(range(3), index=['b', 'e', 'f'])
frame + series2
b d e f
Utah 0.0 NaN 3.0 NaN
Ohio 3.0 NaN 6.0 NaN
Texas 6.0 NaN 9.0 NaN
Oregon 9.0 NaN 12.0 NaN
如果希望匹配行,在列上广播,则必须使用算术运算方法
series3 = frame['d']
frame.sub(series3, axis=0)
b d e
Utah -1.0 0.0 1.0
Ohio -1.0 0.0 1.0
Texas -1.0 0.0 1.0
Oregon -1.0 0.0 1.0