这里使用K近邻算法对生物物种进行分类。
导入数据
from sklearn.datasets import load_iris
iris = load_iris()
iris.data.shape
查看数据说明
print(iris.DESCR)
对数据集进行分割
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
对数据进行标准化处理
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
通过KNN训练模型
from sklearn.neighbors import KNeighborsClassifier
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_predict = knc.predict(X_test)
准确性测评
print('The accuracy of K-Nearest Neighbor Classifier is', knc.score(X_test, y_test))
详细测评
from sklearn.metrics import classification_report
print(classification_report(y_test, y_predict, target_names=iris.target_names))