回归树在选择不同特征作为节点的策略上与决策树思路类似。

不同之处是,回归树叶节点的数据类型不是离散型,而是连续型。

from sklearn.tree import DecisionTreeRegressor
dtr = DecisionTreeRegressor()
dtr.fit(X_train, y_train)
dtr_y_predict = dtr.predict(X_test)

使用R-squared、MSE以及MAE指标对默认胚子的回归树在测试集上进行性能评估

print 'R-squared value of DecisionTreeRegressor:', dtr.score(X_test, y_test)
print 'The mean squared error of DecisionTreeRegressor:', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dtr_y_predict))
print 'The mean absoluate error of DecisionTreeRegressor:', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dtr_y_predict))

results matching ""

    No results matching ""