通过Dockerfile创建Tensorflow grpc server镜像,创建项目目录
mkdir /opt/work/tensorflow
编写Dockerfile
FROM registry.cn-hangzhou.aliyuncs.com/denverdino/tensorflow:0.12.0
RUN mkdir -p /var/worker
ADD . /var/worker
RUN chmod 777 /var/worker/*
ENTRYPOINT ["/var/worker/grpc_tensorflow_server.py"]
镜像也可以直接使用registry.cn-beijing.aliyuncs.com/tensorflow-samples/tf_grpc_server:0.12.0
创建docker-compose.yaml文件
version: '2'
services:
worker-0:
image: registry-internal.cn-beijing.aliyuncs.com/tensorflow-samples/tf_grpc_server:0.12.0
restart: always
container_name: tf-worker0
command:
- --cluster_spec=worker|tf-worker0:2222;tf-worker1:2222,ps|tf-ps0:2222
- --job_name=worker
- --task_id=0
worker-1:
image: registry-internal.cn-beijing.aliyuncs.com/tensorflow-samples/tf_grpc_server:0.12.0
container_name: tf-worker1
restart: always
command:
- --cluster_spec=worker|tf-worker0:2222;tf-worker1:2222,ps|tf-ps0:2222
- --job_name=worker
- --task_id=1
ps-0:
image: registry-internal.cn-beijing.aliyuncs.com/tensorflow-samples/tf_grpc_server:0.12.0
container_name: tf-ps0
restart: always
command:
- --cluster_spec=worker|tf-worker0:2222;tf-worker1:2222,ps|tf-ps0:2222
- --job_name=ps
- --task_id=0
利用docker-compose
命令启动并查看容器状态。