tf.estimator是Tensorflow的高层机器学习API,这里讲应用tf.estimator对Iris数据集进行分类。

加载Iris的数据集

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
from six.moves.urllib.request import urlopen

import tensorflow as tf
import numpy as np

IRIS_TRAINING = "iris_training.csv"
IRIS_TRAINING_URL = "http://download.tensorflow.org/data/iris_training.csv"

IRIS_TEST = "iris_test.csv"
IRIS_TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"

下载数据集

if not os.path.exists(IRIS_TRAINING):
  raw = urlopen(IRIS_TRAINING_URL).read()
  with open(IRIS_TRAINING,'wb') as f:
    f.write(raw)

if not os.path.exists(IRIS_TEST):
  raw = urlopen(IRIS_TEST_URL).read()
  with open(IRIS_TEST,'wb') as f:
    f.write(raw)

加载数据集

# Load datasets.
training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
    filename=IRIS_TRAINING,
    target_dtype=np.int,
    features_dtype=np.float32)
test_set = tf.contrib.learn.datasets.base.load_csv_with_header(
    filename=IRIS_TEST,
    target_dtype=np.int,
    features_dtype=np.float32)

创建深度神经网络分类器

# Specify that all features have real-value data
feature_columns = [tf.feature_column.numeric_column("x", shape=[4])]

# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
                                        hidden_units=[10, 20, 10],
                                        n_classes=3,
                                        model_dir="/tmp/iris_model")

定义训练输入

train_input_fn = tf.estimator.inputs.numpy_input_fn(
    x={"x": np.array(training_set.data)},
    y=np.array(training_set.target),
    num_epochs=None,
    shuffle=True)

训练模型

classifier.train(input_fn=train_input_fn, steps=2000)

评估模型精度

# Define the test inputs
test_input_fn = tf.estimator.inputs.numpy_input_fn(
    x={"x": np.array(test_set.data)},
    y=np.array(test_set.target),
    num_epochs=1,
    shuffle=False)

# Evaluate accuracy.
accuracy_score = classifier.evaluate(input_fn=test_input_fn)["accuracy"]

print("\nTest Accuracy: {0:f}\n".format(accuracy_score))

模型预测

new_samples = np.array(
    [[6.4, 3.2, 4.5, 1.5],
     [5.8, 3.1, 5.0, 1.7]], dtype=np.float32)
predict_input_fn = tf.estimator.inputs.numpy_input_fn(
    x={"x": new_samples},
    num_epochs=1,
    shuffle=False)

predictions = list(classifier.predict(input_fn=predict_input_fn))
predicted_classes = [p["classes"] for p in predictions]

print(
    "New Samples, Class Predictions:    {}\n"
    .format(predicted_classes))

results matching ""

    No results matching ""