读取MNIST数据

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

创建交互式会话

import tensorflow as tf
sess = tf.InteractiveSession()

创建Softmax Regression Model

设置Placeholder

x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])

设置Variable,并初始化

W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

sess.run(tf.global_variables_initializer())

定义regression模型

y = tf.matmul(x,W) + b

定义损失函数

cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))

训练模型

梯度下降训练模型

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

训练

for _ in range(1000):
  batch = mnist.train.next_batch(100)
  train_step.run(feed_dict={x: batch[0], y_: batch[1]})

评估模型

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

计算准确率

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

构建多层卷积网络

权重初始化

def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

定义卷积层

def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

定义池化层

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')

第一层卷积

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

投射image

x_image = tf.reshape(x, [-1, 28, 28, 1])

应用卷积层和池化层

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

第二层卷积

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

紧密连接层

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

Dropout

为防止过拟合,在readout层之前应用dropout

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

Readout层

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

训练评估模型

cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i % 100 == 0:
      train_accuracy = accuracy.eval(feed_dict={
          x: batch[0], y_: batch[1], keep_prob: 1.0})
      print('step %d, training accuracy %g' % (i, train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

  print('test accuracy %g' % accuracy.eval(feed_dict={
      x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

results matching ""

    No results matching ""